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Previously

• Data, data types

• Classification with decision trees (root, leaves, rules, entropy, info gain, TDIDT, ID3)

• Classification: train – test (evaluate) - apply

• Decision tree example (on blackboard)

• Decision tree language bias (Orange workflow)

• Evaluation: 
• Methods: train-test, leave-one-out, randomized sampling,…

• Metrics: accuracy, confusion matrix, precision, recall, F1,…



Keywords
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• Data
• Attribute, example, attribute-value data, target variable, class, discretization, market basket 

data

• Algorithms
• Decision tree induction, ID3, entropy, information gain, overfitting, Occam’s razor, model 

pruning, naïve Bayes classifier, KNN, association rules, support, confidence, classification 
rules, Laplace estimate, numeric prediction, regression tree, model tree, hierarchical 
clustering, dendrogram, k-means clustering, centroid, DB-scan, silhouette coefficient, Apriori, 
heuristics vs. exhaustive search, predictive vs. descriptive DM, language bias, artificial neural 
networks, deep learning, backpropagation,…

• Evaluation
• Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, 

ROC space, AUC, error, precision, recall, F1, MSE, RMSE, rRMSE, support, confidence



High precision and/or high recall?



Probabilistic classification

A probabilistic classifier is a classifier that is able to predict, given an observation of 
an input, a probability distribution over a set of classes, rather than only outputting 
the most likely class that the observation should belong to.
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Naïve Bayes Classifier



Basic probability refresh

• Probability of A 

• Independence

• Conditional probability

• Bayes’ Rule



The idea behind the Naïve Bayes Classifier

• We are interested in the probability of the class C given the attribute values X1, 
X2, X3, …. , Xn

• We „naively“ assume that all attribute values X1, X2, X3, …. , Xn are mutually 
independent, conditional on the category C



Naïve Bayes Classifier

Class ci

Attribute values

Conditional probability of 
attribute value vi given class c

* where ∝ denotes proportionality
* The results are not probabilities (they do not sum up to 1). The formula is simplified for easy 
implementation (and time complexity), while the results are proportional to the estimates of the 
probabilities of a class given the attribute values.

P(ci | a1= v1, a2=v2,…, aj=vj) ∝



Exercise: Naïve Bayes Classifier

• Does the spider catch a white ant during the night?

• Does the spider catch the big black ant at daytime?
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Exercise: Naïve Bayes Classifier
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Does the spider catch a white ant during the night?



Exercise: Naïve Bayes Classifier
Does the spider catch the big black ant at daytime?



Use of Naïve Bayes

• Frequently used in practice
• Medical diagnisis

• The attributes are inherently chosen to be as independent as possible
• NB is not sensitive to missing data

• Simple text classification(features are words)
• Classification of news into categories
• Spam detection

• ….

• Why?
• Simple
• Not sensitive to missing values
• Uses all the available data
• Very few parameters
• Visualization with nomograms



Probability Estimation



Estimating probability

• In machine learning we often estimate probabilities from small samples of data 
and their subsets:
• In the 5th depth of a decision tree we have just about 1/32 of all training examples.

• Estimate the probability based on the amount of evidence and of the prior 
probability
• Coin flip: prior probability 50% - 50%

• One coin flip does not make us believe that the probability of heads is 100%

• More evidence can make us suspect that the coin is biased



Estimating probability

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0
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n(c) … number of examples where c is true
N … number of all examples
k … number of possible events



Relative frequency vs. Laplace estimate

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0

Laplace estimate
• Assumes uniform prior distribution over the 

probabilities for each possible event

• P(c) = (n(c) + 1) / (N + k)

• In our spider example: P(Time=day|caught=NO) = 
(0+1)/(3+2) = 1/5

• With lots of evidence it approximates relative 
frequency

• If there were 300 cases when the spider didn’t 
catch ants at night: P(Time=day|caught=NO) = 
(0+1)/(300+2) = 1/302 = 0.003

• With Laplace estimate probabilities can never be 0.
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Laplace estimate
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Laplace estimate
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Homework

• Compare the Naïve Bayes classifier with decision trees.

• How do we evaluate the Naïve Bayes classifier? Methods, metrics.

• Estimate the probabilities of C1 and C2 in the table below by relative frequency 
and Laplace estimate.

Number of events Relative frequency Laplace estimate

Class C1 Class C2 P(C1) P(C2) P(C1) P(C2)

0 2

12 88

12 988

120 880



Literature

• Max Bramer: Principles of data mining (2007)
• 2. Introduction to Classification: Naive Bayes and Nearest Neighbour

On pg. 30, there is a mistake where it says “making the assumption that the 
attributes are independent” … it should be “conditionally independent given 
the class”. Refer to https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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Numeric prediction
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Example

• data about 80 people: Age and 
Height
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Test set



Baseline numeric predictor

• Average of the target variable
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Baseline predictor: prediction
Average of the target variable is 1.63



Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Linear Regression: prediction

Height =    0.0056 * Age + 1.4181



Regression tree

29

0

0.5

1

1.5

2

0 50 100

Age

H
e
ig

h
t

Height

Prediction



30

Regression tree: prediction



Model tree
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Model tree: prediction
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KNN – K nearest neighbors

• Looks at K closest examples (by non-target attributes) and predicts the average of their 
target variable

• In this example, K=3
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KNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17
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KNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58
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KNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80
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KNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88



Which predictor is the best?
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Age Height Baseline
Linear 

regression

Regressi

on tree

Model 

tree
kNN

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77



MAE: Mean absolute error

The average difference between the 
predicted and the actual values.
The units are the same as the unites in the 
target variable.



MSE: Mean squared error

Mean squared error measures the average 
squared difference between the estimated 
values and the actual value.
Weights large errors more heavily than 
small ones.
The units of the errors are squared.



RMSE: Root mean square error

Taking the square root of MSE yields the 
root-mean-square error (RMSE), which has 
the same units as the quantity being 
estimated.

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸



Correlation coefficient

• Pearson correlation coefficient is a statistical formula that measures the strength 
between variables and relationships.

Similar to confusion matrix in the classification case.
No unit.
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Performance measures for numeric prediction

Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."
Morgan Kaufmann (2005): 578. pg. 178



Numeric prediction in Orange

Models

Metrics

• MSE – mean squared error 

• RMSE – root mean squared error 

• MAE – mean absolute error

• R2 – correlation coefficient
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Numeric prediction Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class



Homework

• Read

Loh, Wei‐Yin. "Classification and regression trees." Wiley Interdisciplinary Reviews: 
Data Mining and Knowledge Discovery 1.1 (2011): 14-23. 
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8

• Compare decision and regression trees.

• Rules of thumb for choosing the k parameter of KNN.

https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8


Clustering



Clustering



Clustering



Clustering

• … is the process of grouping the data instances into clusters so that 
objects within a cluster have high similarity but are very dissimilar to 
objects in other clusters.

• Wish list:
• Identity clusters irrespective of their shapes

• Scalability 

• Ability to deal with noisy data

• Insensitivity to the order of input records



Unsupervised classification



Data summarization: centroid, medoid



Outlier detection



Outlier detection



Applications

• Data mining
• Unsupervised classification

• Data summarization

• Outlier analysis

• …

• Customer segmentation and collaborative filtering

• Text applications

• Social network analysis



Clustering types

• Partitioning
• k-means, k-medoids, k-modes

• Hierarchical 
• Agglomerative

• Grid-based
• Multi-resolution grid structure
• Efficient and scalable

• Density-based 
• A cluster is a dense region of points, which is separated by low density regions, from 

other regions of high density
• Algorithms: DBSCAN, OPTICS, DenClue



K-Means example

Random initialization                            Centroid computation                     Assignment of points to the nearest centroid

Centroid computation                     Assignment of points to the nearest centroid                 Centroid computation

Interactive k-Means (Educational)



K-means

1. Choose k random instances as cluster centers

2. Assign each instance to its closest cluster center

3. Recompute cluster centers by computing the average (aka centroid) of the 
instances pertaining to each cluster

4. If cluster centers have moved, go back to Step 2

(Equivalent termination criterion: stop when assignment of instances to cluster centers 
has not changed)

Alternatives: K-medoids, K-modes

• Might get stuck in local minima
• Silhuette for finding the optimal K



Clustering evaluation

• Clustering analysis doesn’t have a solid evaluation metric

• External validation criteria
• Using the ground truth to evaluate to evaluate the clustering result

• Internal validation criteria
• Sum of distances to centroids

• Intracluster to intercluster distance ratio

• Silhouette coefficient

• Parameter tuning – the “elbow” method

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pgs 195 -201



Silhouette coefficient

• The silhouette value is a measure of how similar an object is to its own cluster 
(cohesion) compared to other clusters (separation).

• For example xi , its silhouette coefficient is

• ai average distance between xi to all other examples in its cluster. 

• bi average distance between xi to the examples in the “closet neighboring” 
cluster

• The overall silhouette coefficient is the average of the data point-specific 
coefficients.



k-Means + Silhouette + „reruns“



Lab exercise: clustering a smiley face

• Paint data: A smiley face

• Cluster by k-means clustring



Properties of k-Means

• The number of clusters k is fixed in advance

• It is fast, it always converges

• Can converge into a local minima (bad solution because of unlucky 
start)

• Finds “spherical” shaped clusters

• K-Means will cluster the data even if it can’t be clustered (e.g. data 
that comes from uniform distributions)



Agglomerative clustering - example



Agglomerative clustering - dendrogram



Agglomerative clustering

1. Start with a collection C of n singleton clusters
• Each cluster contains one data point ci ={xi}

2. Repeat until only one cluster is left:
1. Find a pair of clusters that is closest: min D(ci, cj)

2. Merge the clusters ci and cj into ci+j

3. Remove ci and cj from the collection C, add ci+j

Some new index, not a sum

• Time and space complexity 
• Sensitive to noisy data



Dendrogram

• The agglomerative hierarchical clustering algorithms result is commonly displayed 
as a tree diagram called a dendrogram. 

• Dendrogram a tree diagram for showing taxonomic relationships. 



Example: Hierarchical clustering of genes



Lab exercise: clustering a smiley face

• Paint data: A smiley face

• Cluster by k-means clustring
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Grid-based (parameters p and τ)

1. Discretize each dimension of D into p ranges

2. Determine dense grid cells at level τ

3. Create graph where dense grid cells are connected if they are adjacent

4. Determine connected components of graph

5. Return: points in each connected component as a cluster



Grid-based (parameters p and τ)

1. Discretize each dimension of D into p ranges

2. Determine dense grid cells at level τ

3. Create graph where dense grid cells are connected if they are adjacent

4. Determine connected components of graph

5. Return: points in each connected component as a cluster



Density based clustering
DBSCAN(Data: D, Radius: Eps, Density: τ )

• Core point: A data point is defined as a core point, if it contains at least τ data 
points within a radius Eps.

• Border point: A data point is defined as a border point, if it contains less than τ 
points, but it also contains at least one core point within a radius Eps.

• Noise point: A data point that is neither a core point nor a border point is defined 
as a noise point.



Density based clustering
DBSCAN(Data: D, Radius: Eps, Density: τ )

1. Determine core, border and noise points of D at level (Eps, τ);

2. Create graph in which core points are connected if they are within Eps of one another;

3. Determine connected components in graph;

4. Assign each border point to connected component with which it is best connected;

5. Return points in each connected component as a cluster;

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pg 183



DBSCAN properties

Similar to grid-based approaches, except that it uses circular regions as 
building blocks.
Advantages of DBSCAN:
• Can detect clusters of arbitrary shape.
• Does not require the number of clusters as an input parameter.
• Not sensitive to outliers.
Disadvantages of DBSCAN:
• Computationally expensive in the first step (Determine core, border and 

noise points of D at level (Eps, τ);
• Susceptible to variations in the local cluster density.
• Struggles with high dimensionality data. 



Literature

• Max Bramer: Principles of data mining (2007)
• 14. Clustering

• Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. 
Chapter 6: cluster analysis, pgs 195 -201 



Neural networks



Neuron, perceptron



The perceptron is a mathematical model of a biological neuron

• A single perceptron can separate 
linearly.

1 if A x + B y > C
Output of P =

0 if A x + B y < = C{



Neural network

forward

backward



What is backpropagation really doing?
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https://www.youtube.com/watch?v=Ilg3gGewQ5U


Predictive model

• Architecture
• Define

• Compile

• Train (fit)
• Forward

• Backward

• Optimize

• Predict (evaluate)
• Forward



Train

• Forward propagation (check performance)
• Loss function is an error metric between actual and predicted

• absolute error, sum of squared errors

• Backpropagation (direction of parameter/weight change)
• How much the total error will change if we change the internal weight of the neural 

network by a certain small value Δw (gradient)
• Backpropagate the errors using the derivatives of these functions: auto-differentiation

• Optimization (change weights based on learning rate, gradient descent)
• New weight = old weight — Derivative Rate * learning rate
• Batch size is a hyperparameter that controls the number of training samples to work 

through before the model’s internal parameters are updated.
• The number of epochs is a hyperparameter that controls the number of complete passes 

through the training dataset.

Neural networks and back-propagation explained in a simple way

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e


Handwritten Digit Recognition using Convolutional Neural 
Networks in Python with Keras

https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/



Keras: The Python Deep Learning library

• Keras is a high-level neural networks API, written in Python and 
capable of running on top of TensorFlow, CNTK, or Theano.

• Google’s Tensorflow: is a low-level framework that can be used with 
Python and C++.

• Install packages: tensorflow, keras

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano


MINST – handwritten digits

• Each image is a 28 by 28 pixel square (784 
pixels total). 

• Normalized in size and centered

• A standard spit of the dataset is used to 
evaluate and compare models, where 60,000 
images are used to train a model and a 
separate set of 10,000 images are used to 
test it.



Exercise

• Load the MNIST dataset in Keras.

• Train and evaluate a baseline neural network model for the MNIST 
problem.

• Train and evaluate a simple Convolutional Neural Network for MNIST.

• Implement a close to state-of-the-art deep learning model for 
MNIST.



Load the data: 9_neural_nets-0-load_data.py 

from keras.datasets import mnist

import matplotlib.pyplot as plt

# Plot ad hoc mnist instances

(X_train, y_train), (X_test, y_test) = mnist.load_data()   # Dataset of 60,000 28x28 

grayscale images of the 10 digits, along with a test set of 10,000 images.

# plot 4 images as gray scale

plt.subplot(221)

plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))

plt.subplot(222)

plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))

plt.subplot(223)

plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))

plt.subplot(224)

plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))

# show the plot

plt.show()



Prepare data: 9_neural_nets-1-perceptron.py

# fix random seed for reproducibility

seed = 7

numpy.random.seed(seed)

# load data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

# flatten 28*28 images to a 784 vector for each image

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')

# train-validation split

X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.1, random_state=42)

# normalize inputs from 0-255 to 0-1

X_train = X_train / 255

X_validation = X_validation / 255

X_test = X_test / 255

# one hot encode outputs

y_train = np_utils.to_categorical(y_train)

y_validation = np_utils.to_categorical(y_validation)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]



One-hot Encoding 
for Multi-label and multi-target prediction

0     1     2     3    4     5    6    7     8     9  

np_utils.to_categorical



Define + compile, fit, predict: 9_neural_nets-1-perceptron.py 

# define baseline model

def baseline_model():

# create model

model = Sequential()

model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu'))

model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax'))

# Compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

# build the model

model = baseline_model()

# Fit the model

model.fit(X_train, y_train, validation_data=(X_validation, y_validation), epochs=10, batch_size=200, 

# Final evaluation of the model

print("Final evaluation of the model")

scores = model.evaluate(X_test, y_test, verbose=1)

print("Baseline Error: %.2f%%" % (100 - scores[1] * 100))



Activation functions

• relu(x) = max(0, x)

• Softmax
• After applying softmax, each component will be in the interval [0,1], and the 

components will add up to 1
• The softmax function is frequently used as the final activation function in 

neural networks for classification problems. 
• Maps the non-normalized output of a network to a probability distribution 

over predicted output classes.
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Loss function: categorical_crossentropy

• Multi-class classification tasks

• Must be combined with Softmax

• ŷij is the predicted value

• yij is the actual (correct) value

92



Architecture

• Layers: type, inicialization, regularization
• Dense
• Convolutional
• Pooling
• Dropout – for regularization
• Recurrent
• Embedding

• Activation functions 
• relu
• softmax (output layer)

• Loss function
• Classification

• categorical_crossentropy, categorical_hinge, sparse_categorical_crossentropy, binary_crossentropy, …

• Numeric prediction
• mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, mean_squared_logarithmic_error, cosine_proximity, …

• Model.compile



Types of layers (1)

Dense Convolutional

A max-pooling layer takes the 
maximum of features over small 
blocks of a previous layer.

Dropout Pooling

Fully connected. During training, some 
neurons on a particular 
layer will be 
deactivated. This 
improves generalization 
because it forces the 
layer to learn with 
different neurons the 
same "concept“.

Edge detection example 
https://youtu.be/puxHUGpuOVw

The convolution layer 
comprises of a set of 
independent filters. Each 
filter is independently 
convolved with the 
image.

Example: link

https://ricardodeazambuja.com/deep_learning/2017/03/05/easy-peasy_conv_deep_learning_two/


Types of layers (2)

Flatten

Fully connected.



Convolutional model

def baseline_model():

# create model

model = Sequential()

model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

# Compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model


