
Data and Text Mining
Petra Kralj Novak

November 25, 2020

http://kt.ijs.si/petra_kralj/dmkd.html

INFORMATION AND COMMUNICATION TECHNOLOGIES
Master study programme

1

http://kt.ijs.si/petra_kralj/dmkd.html

Previously

• Data, data types

• Classification with decision trees (root, leaves, rules, entropy, info gain, TDIDT, ID3)

• Classification: train – test (evaluate) - apply

• Decision tree example (on blackboard)

• Decision tree language bias (Orange workflow)

• Evaluation:
• Methods: train-test, leave-one-out, randomized sampling,…

• Metrics: accuracy, confusion matrix, precision, recall, F1,…

Keywords

3

• Data
• Attribute, example, attribute-value data, target variable, class, discretization, market basket

data

• Algorithms
• Decision tree induction, ID3, entropy, information gain, overfitting, Occam’s razor, model

pruning, naïve Bayes classifier, KNN, association rules, support, confidence, classification
rules, Laplace estimate, numeric prediction, regression tree, model tree, hierarchical
clustering, dendrogram, k-means clustering, centroid, DB-scan, silhouette coefficient, Apriori,
heuristics vs. exhaustive search, predictive vs. descriptive DM, language bias, artificial neural
networks, deep learning, backpropagation,…

• Evaluation
• Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives,

ROC space, AUC, error, precision, recall, F1, MSE, RMSE, rRMSE, support, confidence

High precision and/or high recall?

Probabilistic classification

A probabilistic classifier is a classifier that is able to predict, given an observation of
an input, a probability distribution over a set of classes, rather than only outputting
the most likely class that the observation should belong to.

5

Naïve Bayes Classifier

Basic probability refresh

• Probability of A

• Independence

• Conditional probability

• Bayes’ Rule

The idea behind the Naïve Bayes Classifier

• We are interested in the probability of the class C given the attribute values X1,
X2, X3, …. , Xn

• We „naively“ assume that all attribute values X1, X2, X3, …. , Xn are mutually
independent, conditional on the category C

Naïve Bayes Classifier

Class ci

Attribute values

Conditional probability of
attribute value vi given class c

* where ∝ denotes proportionality
* The results are not probabilities (they do not sum up to 1). The formula is simplified for easy
implementation (and time complexity), while the results are proportional to the estimates of the
probabilities of a class given the attribute values.

P(ci | a1= v1, a2=v2,…, aj=vj) ∝

Exercise: Naïve Bayes Classifier

• Does the spider catch a white ant during the night?

• Does the spider catch the big black ant at daytime?

10

Exercise: Naïve Bayes Classifier

11

Does the spider catch a white ant during the night?

Exercise: Naïve Bayes Classifier
Does the spider catch the big black ant at daytime?

Use of Naïve Bayes

• Frequently used in practice
• Medical diagnisis

• The attributes are inherently chosen to be as independent as possible
• NB is not sensitive to missing data

• Simple text classification(features are words)
• Classification of news into categories
• Spam detection

• ….

• Why?
• Simple
• Not sensitive to missing values
• Uses all the available data
• Very few parameters
• Visualization with nomograms

Probability Estimation

Estimating probability

• In machine learning we often estimate probabilities from small samples of data
and their subsets:
• In the 5th depth of a decision tree we have just about 1/32 of all training examples.

• Estimate the probability based on the amount of evidence and of the prior
probability
• Coin flip: prior probability 50% - 50%

• One coin flip does not make us believe that the probability of heads is 100%

• More evidence can make us suspect that the coin is biased

Estimating probability

Relative frequency
• P(c) = n(c) /N

• A disadvantage of using relative frequencies for
probability estimation arises with small sample
sizes, especially if the probabilities are either very
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) =

= 0/3 = 0

16

n(c) … number of examples where c is true
N … number of all examples
k … number of possible events

Relative frequency vs. Laplace estimate

Relative frequency
• P(c) = n(c) /N

• A disadvantage of using relative frequencies for
probability estimation arises with small sample
sizes, especially if the probabilities are either very
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) =

= 0/3 = 0

Laplace estimate
• Assumes uniform prior distribution over the

probabilities for each possible event

• P(c) = (n(c) + 1) / (N + k)

• In our spider example: P(Time=day|caught=NO) =
(0+1)/(3+2) = 1/5

• With lots of evidence it approximates relative
frequency

• If there were 300 cases when the spider didn’t
catch ants at night: P(Time=day|caught=NO) =
(0+1)/(300+2) = 1/302 = 0.003

• With Laplace estimate probabilities can never be 0.

17

n(c) … number of examples where c is true
N … number of all examples
k … number of possible events

Laplace estimate

18

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5

Laplace

Laplace estimate

19

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5

Laplace

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100

Laplace

Homework

• Compare the Naïve Bayes classifier with decision trees.

• How do we evaluate the Naïve Bayes classifier? Methods, metrics.

• Estimate the probabilities of C1 and C2 in the table below by relative frequency
and Laplace estimate.

Number of events Relative frequency Laplace estimate

Class C1 Class C2 P(C1) P(C2) P(C1) P(C2)

0 2

12 88

12 988

120 880

Literature

• Max Bramer: Principles of data mining (2007)
• 2. Introduction to Classification: Naive Bayes and Nearest Neighbour

On pg. 30, there is a mistake where it says “making the assumption that the
attributes are independent” … it should be “conditionally independent given
the class”. Refer to https://en.wikipedia.org/wiki/Naive_Bayes_classifier

21

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Numeric prediction

22

Example

• data about 80 people: Age and
Height

0

0.5

1

1.5

2

0 50 100

Age

H
e
ig

h
t

Height

23

24

Test set

Baseline numeric predictor

• Average of the target variable

25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Average predictor

26

Baseline predictor: prediction
Average of the target variable is 1.63

Linear Regression Model

Height = 0.0056 * Age + 1.4181

27

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Prediction

28

Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

Regression tree

29

0

0.5

1

1.5

2

0 50 100

Age

H
e
ig

h
t

Height

Prediction

30

Regression tree: prediction

Model tree

0

0.5

1

1.5

2

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Prediction

31

Model tree: prediction

32

KNN – K nearest neighbors

• Looks at K closest examples (by non-target attributes) and predicts the average of their
target variable

• In this example, K=3

33

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Prediction KNN, n=3

34

KNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17

35

KNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58

36

KNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80

37

KNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88

Which predictor is the best?

38

Age Height Baseline
Linear

regression

Regressi

on tree

Model

tree
kNN

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77

MAE: Mean absolute error

The average difference between the
predicted and the actual values.
The units are the same as the unites in the
target variable.

MSE: Mean squared error

Mean squared error measures the average
squared difference between the estimated
values and the actual value.
Weights large errors more heavily than
small ones.
The units of the errors are squared.

RMSE: Root mean square error

Taking the square root of MSE yields the
root-mean-square error (RMSE), which has
the same units as the quantity being
estimated.

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

Correlation coefficient

• Pearson correlation coefficient is a statistical formula that measures the strength
between variables and relationships.

Similar to confusion matrix in the classification case.
No unit.

43

Performance measures for numeric prediction

Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."
Morgan Kaufmann (2005): 578. pg. 178

Numeric prediction in Orange

Models

Metrics

• MSE – mean squared error

• RMSE – root mean squared error

• MAE – mean absolute error

• R2 – correlation coefficient

45

Numeric prediction Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class

Homework

• Read

Loh, Wei‐Yin. "Classification and regression trees." Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (2011): 14-23.
https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8

• Compare decision and regression trees.

• Rules of thumb for choosing the k parameter of KNN.

https://onlinelibrary.wiley.com/doi/full/10.1002/widm.8

Clustering

Clustering

Clustering

Clustering

• … is the process of grouping the data instances into clusters so that
objects within a cluster have high similarity but are very dissimilar to
objects in other clusters.

• Wish list:
• Identity clusters irrespective of their shapes

• Scalability

• Ability to deal with noisy data

• Insensitivity to the order of input records

Unsupervised classification

Data summarization: centroid, medoid

Outlier detection

Outlier detection

Applications

• Data mining
• Unsupervised classification

• Data summarization

• Outlier analysis

• …

• Customer segmentation and collaborative filtering

• Text applications

• Social network analysis

Clustering types

• Partitioning
• k-means, k-medoids, k-modes

• Hierarchical
• Agglomerative

• Grid-based
• Multi-resolution grid structure
• Efficient and scalable

• Density-based
• A cluster is a dense region of points, which is separated by low density regions, from

other regions of high density
• Algorithms: DBSCAN, OPTICS, DenClue

K-Means example

Random initialization Centroid computation Assignment of points to the nearest centroid

Centroid computation Assignment of points to the nearest centroid Centroid computation

Interactive k-Means (Educational)

K-means

1. Choose k random instances as cluster centers

2. Assign each instance to its closest cluster center

3. Recompute cluster centers by computing the average (aka centroid) of the
instances pertaining to each cluster

4. If cluster centers have moved, go back to Step 2

(Equivalent termination criterion: stop when assignment of instances to cluster centers
has not changed)

Alternatives: K-medoids, K-modes

• Might get stuck in local minima
• Silhuette for finding the optimal K

Clustering evaluation

• Clustering analysis doesn’t have a solid evaluation metric

• External validation criteria
• Using the ground truth to evaluate to evaluate the clustering result

• Internal validation criteria
• Sum of distances to centroids

• Intracluster to intercluster distance ratio

• Silhouette coefficient

• Parameter tuning – the “elbow” method

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pgs 195 -201

Silhouette coefficient

• The silhouette value is a measure of how similar an object is to its own cluster
(cohesion) compared to other clusters (separation).

• For example xi , its silhouette coefficient is

• ai average distance between xi to all other examples in its cluster.

• bi average distance between xi to the examples in the “closet neighboring”
cluster

• The overall silhouette coefficient is the average of the data point-specific
coefficients.

k-Means + Silhouette + „reruns“

Lab exercise: clustering a smiley face

• Paint data: A smiley face

• Cluster by k-means clustring

Properties of k-Means

• The number of clusters k is fixed in advance

• It is fast, it always converges

• Can converge into a local minima (bad solution because of unlucky
start)

• Finds “spherical” shaped clusters

• K-Means will cluster the data even if it can’t be clustered (e.g. data
that comes from uniform distributions)

Agglomerative clustering - example

Agglomerative clustering - dendrogram

Agglomerative clustering

1. Start with a collection C of n singleton clusters
• Each cluster contains one data point ci ={xi}

2. Repeat until only one cluster is left:
1. Find a pair of clusters that is closest: min D(ci, cj)

2. Merge the clusters ci and cj into ci+j

3. Remove ci and cj from the collection C, add ci+j

Some new index, not a sum

• Time and space complexity
• Sensitive to noisy data

Dendrogram

• The agglomerative hierarchical clustering algorithms result is commonly displayed
as a tree diagram called a dendrogram.

• Dendrogram a tree diagram for showing taxonomic relationships.

Example: Hierarchical clustering of genes

Lab exercise: clustering a smiley face

• Paint data: A smiley face

• Cluster by k-means clustring

69

Grid-based (parameters p and τ)

1. Discretize each dimension of D into p ranges

2. Determine dense grid cells at level τ

3. Create graph where dense grid cells are connected if they are adjacent

4. Determine connected components of graph

5. Return: points in each connected component as a cluster

Grid-based (parameters p and τ)

1. Discretize each dimension of D into p ranges

2. Determine dense grid cells at level τ

3. Create graph where dense grid cells are connected if they are adjacent

4. Determine connected components of graph

5. Return: points in each connected component as a cluster

Density based clustering
DBSCAN(Data: D, Radius: Eps, Density: τ)

• Core point: A data point is defined as a core point, if it contains at least τ data
points within a radius Eps.

• Border point: A data point is defined as a border point, if it contains less than τ
points, but it also contains at least one core point within a radius Eps.

• Noise point: A data point that is neither a core point nor a border point is defined
as a noise point.

Density based clustering
DBSCAN(Data: D, Radius: Eps, Density: τ)

1. Determine core, border and noise points of D at level (Eps, τ);

2. Create graph in which core points are connected if they are within Eps of one another;

3. Determine connected components in graph;

4. Assign each border point to connected component with which it is best connected;

5. Return points in each connected component as a cluster;

Aggarwal, Charu C. Data mining: the textbook. Springer, 2015. Chapter 6: cluster analysis, pg 183

DBSCAN properties

Similar to grid-based approaches, except that it uses circular regions as
building blocks.
Advantages of DBSCAN:
• Can detect clusters of arbitrary shape.
• Does not require the number of clusters as an input parameter.
• Not sensitive to outliers.
Disadvantages of DBSCAN:
• Computationally expensive in the first step (Determine core, border and

noise points of D at level (Eps, τ);
• Susceptible to variations in the local cluster density.
• Struggles with high dimensionality data.

Literature

• Max Bramer: Principles of data mining (2007)
• 14. Clustering

• Aggarwal, Charu C. Data mining: the textbook. Springer, 2015.
Chapter 6: cluster analysis, pgs 195 -201

Neural networks

Neuron, perceptron

The perceptron is a mathematical model of a biological neuron

• A single perceptron can separate
linearly.

1 if A x + B y > C
Output of P =

0 if A x + B y < = C{

Neural network

forward

backward

What is backpropagation really doing?

80

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Predictive model

• Architecture
• Define

• Compile

• Train (fit)
• Forward

• Backward

• Optimize

• Predict (evaluate)
• Forward

Train

• Forward propagation (check performance)
• Loss function is an error metric between actual and predicted

• absolute error, sum of squared errors

• Backpropagation (direction of parameter/weight change)
• How much the total error will change if we change the internal weight of the neural

network by a certain small value Δw (gradient)
• Backpropagate the errors using the derivatives of these functions: auto-differentiation

• Optimization (change weights based on learning rate, gradient descent)
• New weight = old weight — Derivative Rate * learning rate
• Batch size is a hyperparameter that controls the number of training samples to work

through before the model’s internal parameters are updated.
• The number of epochs is a hyperparameter that controls the number of complete passes

through the training dataset.

Neural networks and back-propagation explained in a simple way

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e

Handwritten Digit Recognition using Convolutional Neural
Networks in Python with Keras

https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/

Keras: The Python Deep Learning library

• Keras is a high-level neural networks API, written in Python and
capable of running on top of TensorFlow, CNTK, or Theano.

• Google’s Tensorflow: is a low-level framework that can be used with
Python and C++.

• Install packages: tensorflow, keras

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano

MINST – handwritten digits

• Each image is a 28 by 28 pixel square (784
pixels total).

• Normalized in size and centered

• A standard spit of the dataset is used to
evaluate and compare models, where 60,000
images are used to train a model and a
separate set of 10,000 images are used to
test it.

Exercise

• Load the MNIST dataset in Keras.

• Train and evaluate a baseline neural network model for the MNIST
problem.

• Train and evaluate a simple Convolutional Neural Network for MNIST.

• Implement a close to state-of-the-art deep learning model for
MNIST.

Load the data: 9_neural_nets-0-load_data.py

from keras.datasets import mnist

import matplotlib.pyplot as plt

Plot ad hoc mnist instances

(X_train, y_train), (X_test, y_test) = mnist.load_data() # Dataset of 60,000 28x28

grayscale images of the 10 digits, along with a test set of 10,000 images.

plot 4 images as gray scale

plt.subplot(221)

plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))

plt.subplot(222)

plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))

plt.subplot(223)

plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))

plt.subplot(224)

plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))

show the plot

plt.show()

Prepare data: 9_neural_nets-1-perceptron.py

fix random seed for reproducibility

seed = 7

numpy.random.seed(seed)

load data

(X_train, y_train), (X_test, y_test) = mnist.load_data()

flatten 28*28 images to a 784 vector for each image

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')

X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')

train-validation split

X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.1, random_state=42)

normalize inputs from 0-255 to 0-1

X_train = X_train / 255

X_validation = X_validation / 255

X_test = X_test / 255

one hot encode outputs

y_train = np_utils.to_categorical(y_train)

y_validation = np_utils.to_categorical(y_validation)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

One-hot Encoding
for Multi-label and multi-target prediction

0 1 2 3 4 5 6 7 8 9

np_utils.to_categorical

Define + compile, fit, predict: 9_neural_nets-1-perceptron.py

define baseline model

def baseline_model():

create model

model = Sequential()

model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu'))

model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax'))

Compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

build the model

model = baseline_model()

Fit the model

model.fit(X_train, y_train, validation_data=(X_validation, y_validation), epochs=10, batch_size=200,

Final evaluation of the model

print("Final evaluation of the model")

scores = model.evaluate(X_test, y_test, verbose=1)

print("Baseline Error: %.2f%%" % (100 - scores[1] * 100))

Activation functions

• relu(x) = max(0, x)

• Softmax
• After applying softmax, each component will be in the interval [0,1], and the

components will add up to 1
• The softmax function is frequently used as the final activation function in

neural networks for classification problems.
• Maps the non-normalized output of a network to a probability distribution

over predicted output classes.

91

Loss function: categorical_crossentropy

• Multi-class classification tasks

• Must be combined with Softmax

• ŷij is the predicted value

• yij is the actual (correct) value

92

Architecture

• Layers: type, inicialization, regularization
• Dense
• Convolutional
• Pooling
• Dropout – for regularization
• Recurrent
• Embedding

• Activation functions
• relu
• softmax (output layer)

• Loss function
• Classification

• categorical_crossentropy, categorical_hinge, sparse_categorical_crossentropy, binary_crossentropy, …

• Numeric prediction
• mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, mean_squared_logarithmic_error, cosine_proximity, …

• Model.compile

Types of layers (1)

Dense Convolutional

A max-pooling layer takes the
maximum of features over small
blocks of a previous layer.

Dropout Pooling

Fully connected. During training, some
neurons on a particular
layer will be
deactivated. This
improves generalization
because it forces the
layer to learn with
different neurons the
same "concept“.

Edge detection example
https://youtu.be/puxHUGpuOVw

The convolution layer
comprises of a set of
independent filters. Each
filter is independently
convolved with the
image.

Example: link

https://ricardodeazambuja.com/deep_learning/2017/03/05/easy-peasy_conv_deep_learning_two/

Types of layers (2)

Flatten

Fully connected.

Convolutional model

def baseline_model():

create model

model = Sequential()

model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

